If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+64X+128=0
a = 1; b = 64; c = +128;
Δ = b2-4ac
Δ = 642-4·1·128
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{14}}{2*1}=\frac{-64-16\sqrt{14}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{14}}{2*1}=\frac{-64+16\sqrt{14}}{2} $
| Y+2y-3y=21 | | -4x+13=-17 | | −3(x+5)=9 | | 4p+2=80 | | 3(2x-4)=12+6x | | 298.2=21(8x-7) | | 2n+8/3=33 | | -54=69x-6) | | -15+4r=-15 | | 9(x-3)=3(4x+5) | | 6=3w+3/5 | | 6v+13=61 | | .3x+3=5x-5 | | y/3+5.4=-2.1 | | 3/10n+9/10=-1/5n-23/10 | | 12x+209=497 | | -32=4(6-y) | | 26=u+17 | | 360=30m | | -7=-(4-+3n)+2(n-2) | | s10=7s10=7. | | 13x=24+9x | | n.8=72 | | -7/8t=-42 | | 1/2x+10=1/4x+13 | | x+3x/4=140 | | 5x+4+9x-12=180 | | 0.5b-8=6 | | 5+16v-10=8(4v-1)-16v | | Y+y-13=171 | | f+12=23 | | x2−8x+27=0 |